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Abstract. The problem is considered of assigning a probability distribution on the basis of a 
limited number of moments. The Jaynes-Shannon maximum-entropy method is adapted to 
numerical computation by the construction of a suitable type of histogram. A brief account 
is given of the numerical methods involved and some numerical examples and results are 
presented, including an application to ion implantation. 

1. Introduction 

The estimation of a probability density function w ( x )  from a limited number of known 
parameters is a well established problem. In its usual form the known (or assumed) 
parameters consist of some or all of the moments 

where it is convenient to use ( f ( x ) )  to denote the expectation value of f ( x ) ,  and R 
denotes the range of variation of x .  Even in the theoretical case where moments of all 
orders exist and are known, the complete set {pm}  does not necessarily uniquely 
determine w ( x )  (see for example Shohat and Tamarkind 1950 for a full discussion). The 
usual practical situation is one where only a few moments are available, either from 
experimental measurements or from calculations. The problem is then to assign a w ( x )  
which is consistent with these and is most 'reasonable' in some sense. This situation has 
occurred in several branches of physics in recent years (cf Porter 1965, Collins 1965, 
1967, Powles and Carazza 1970a, b). 

One approach to this problem which has become quite widely adopted is to select a 
w ( x )  which maximises the entropy H (subject to the given p m )  where H is defined by 

H =  - dx w(x)ln w ( x ) .  (1.2) I 
The entropy concept in this sense was developed by a number of workers, notably 

Wiener, Shannon and their collaborators (for a full discussion see for instance Shannon 
and Weaver 1949). The inference argument used here was developed by Jaynes (1957) 
with particular reference to physics. A comprehensive account of its use in statistical 
mechanics is given by Katz (1967). An early account of the more general physical 
significance of'these ideas is given by Brillouin (1956). 

Despite much theoretical discussion, until recently very little in the way of actual 
computation was done using these ideas and the only explicit results available were 
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those for p1  only, for a one-sided w ( x )  defined over 0 6 x <CO, and for p2 only (where a 
normal distribution is obtained). These two cases were put together on a systematic 
basis by Wragg and Dowson (Wragg and Dowson 1970, Dowson and Wragg 1973) who 
showed that even in this relatively simple case, the solutions of Jaynes-Shannon (JS) 
type only exist over 0 G x < CO if the (hitherto unsuspected) relation 

is satisfied. 
Although a solution of JS type over 0 s x < CO does not exist in the strict mathemati- 

cal sense when p2 > 2p:, the entropy is bounded and the upper bound of H can be 
approached in practice by some distributions. These distributions characteristically 
contain a component which is completely determined for finite x ,  together with a small 
weight at infinity accounting for the second moment p2. If p2 is increased the small 
weight at infinity changes but the first component remains unchanged, and in this sense 
it can be considered as an admissible solution of JS type. 

Severe computational difficulties were encountered in extending the JS formalism to 
include higher-order moments. In an attempt to overcome these, we decided to try 
direct numerical computation of a maximum-entropy distribution in the form of a 
histogram with a fixed number of blocks. To carry out this procedure, an algorithm was 
developed, and embodied in a working computer program. The results obtained so far 
seem to be sufficiently encouraging to present them here and to describe the method 
used in more detail. 

The method described here does not provide a different answer to the moments 
problem from that implicit in the JS formalism. However, experience so far indicates 
that it is considerably easier to handle numerically, and also is easier to use in the 
anomalous case, that is when p2 > 2p?  over O s  x < CO, and a truncated range must be 
used. Moreover, in this latter case, it is not necessary with the method described here, 
to specify in advance the truncation range, which is determined automatically during 
the computation. This represents a major advantage from the practical point of view. 

To illustrate the application of the method to a specific problem in physics, we 
consider the depth distribution of atoms implanted in a solid by ionic bombardment. 
This is a case where physical theory yields only a limited number of moments of the 
distribution, and the overall shape has to be inferred in some manner from these. 
Previous methods of carrying out the fitting of a distribution to the moments have 
depended to a greater or lesser extent on prior assumptions as to the general form of the 
distribution. In 0 4.6 a particular case is treated by out present methods, and the results 
are compared with those of previous statistical treatments. 

2. Summary of earlier results 

2.1. General background 

Suppose M moments p l ,  p2, . . . , pu are given, as defined by (1.1). Then, direct 
maximisation of H (as given by (1.2)) subject to these M constraints and the normalisa- 
tion condition 

dx w ( x ) =  1 
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can be carried out by the usual method of Lagrange undetermined multipliers (see, e.g. 
Jaynes 1957). The formal result is 

(2.2) 2 w(x)=c  exp(-plx-P2x - .  . . -pMxM) 

where 
-1 

c = (1 dx exp(-Plx - . . . - &xM)) 

and the Pm are to be chosen to satisfy equations (1.1) for the given w,,,. The precise 
conditions under which such a set { P m }  do exist satisfying these conditions in the general 
case do not seem to be known. Only in the simple cases M =  1 and M = 2 are the 
conditions known in any completeness. 

2.2. First moment only given 

If the range R of x is finite (a S x S b )  or semi-infinite (a S x < x or --OO < x s b )  then a 
solution of the form 

w (x) = c e-” (2.4) 

can be found, for which P is positive or negative depending on R, provided only that 
p1 = 1 lies within R, which is an obvious condition for consistency. 

For the semi-infinite ranges we get 

and for the finite range 

which must be solved for /3 numerically. 
If we consider the infinite range --CO < x <CO then the entropy H is not bounded for a 

fixed value of p, and (2.4) no longer holds. A search for larger and larger values of H 
would lead to distributions having a larger and larger spread. 

2.3. First two moments only 

In this case the maximum-entropy probability density function given by the variational 
calculation has the form (putting M = 2): 

w(x) = c exp(-Plx - p2x2) (2.7) 

where in this case for -00 < x c 00 

The existence or otherwise of real P I ,  P z  satisfying the moment equations depends on 
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the range R involved, but in any case, necessary conditions are 

and 

where a may be -00, and b may be +W. 

a < k l < b  

P k P 2  

(2.9) 

(2.10) 

2.3.1. Unrestricted range -w<x < W .  In this case, (2.9) and (2.10) are also sufficient 
conditions and PI, P2 are given explicitly by: 

(2.11) 

(2.12) 

2.3.2. Finite range a s x S b. In this case also, (2.9) and (2.10) are sufficient conditions 
(Dowson and Wragg 1973) but the calculation of P1 and p2 from p1 and p2 has to be 
done numerically. 

2.3.3. Semi-infinite range a S x <Co. This case also was investigated by Dowson and 
Wragg for the particular case a = 0. Transformed to the case of non-zero a,  the result 
they proved was that conditions (2.9) and (2.10) are no longer sufficient for the 
existence of real values of PI,  P2 but must be supplemented by the further condition: 

~ 2 ~ 2 2 1 1 . 1 ( ~ 1  - a ) + a 2 .  (2.13) 

If this inequality is reversed, then no absolutely continuous probability distribution 
exists on a < x < 00 which has the given values for pl and p2 and which maximises the 
entropy. 

For simplicity we restrict attention to the case a = 0 and if (2.13) is not satisfied (i.e. if 
2 p : < ~ ~ )  we term this an 'anomalous case'. In fact although no one distribution in 
0 G x < cc maximises the entropy H, the upper bound 1 + In p1 of H for a given pl can 
be approached arbitrarily closely. To see this consider a distribution of the form 

(2.14) 

where X is large and E is small?. This is shown diagrammatically in figure 1, For given 
pl and kz it can be shown that 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

t The authors are indebted to one of the referees for suggesting this approach. 
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x 

Figure 1. High-entropy distribution for the ‘anomalous case’ 2 ~ : <  F ~ ,  with two moments 
given. 

where 

A = (p2 - 2 p y 2 ,  (2.19) 

Clearly, as E + 0, X+ 0;) and the entropy H approaches arbitrarily closely to its upper 
bound. The maximum-entropy continuous distribution over 0 S x S R (discussed in 
0 4.5) closely parallels this as R + 0;). 

Clearly for 2p:<p2  the upper bound of H, for any specified value of p l ,  is 
independent of p2. Following thermodynamic practice, we denote by S(pl, p2)  the 
upper bound of H for given pl and p2.  The graph of S against p2 for given p l  is shown 
in  figure 2 where we take p I  = 1 for simplicity. As p2 -+ p:+, of course, S + -a since 
w ( x ) +  6 ( x  - p l ) .  The full curve (calculated using the results of Wragg and Dowson 
1970) shows the smooth variation of the (attainable) maximum value S of H as a 
function of p2, reaching its largest value of 1 +In p I  as p2 + 2p:. 

The broken line shows the persistence of this value of S into the anomalous region as 
an upper bound to H, although unattainable exactly by any given distribution with the 
given two moments. The curves for R = 3 and R = 4 are given to show the correspond- 
ing variation of S with p2 for a finite range R. 

The decrease of S as p2 + CO for fixed R is quite a striking feature, and corresponds 
to the increasing concentration of the distribution near x = 0 and x = R. For R = a, and 

\ 

Figure 2. Dependence on p2 of the entropy upper bound S for the two-moment case with 
range R. 
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fixed p l ,  S is clearly not an analytic function of p2,  since there is a transition at the point 
P. If we put 

p2 = 2c~:(1 - h )  O < h < < l  (2.20) 

then a straightforward (although algebraically tedious) calculation gives the result 

S = 1 + In p I  -$h2  + 0 ( h 3 )  (2.21) 

so that S and aS/ap2 are continuous across the transition point P, while d2S/dp: has a 
discontinuity of magnitude 1 /(4p;). 

The fact that S becomes a non-analytic function of p2 as R +a, suggests a 
comparison with a phase transition of a physical system, where the thermodynamic 
entropy also takes a maximum, subject to constraints on constants of motion such as 
energy and particle number, and where the entropy also becomes non-analytic as the 
volume V +  00. In such a comparison, the two ‘phases’ of the system would correspond 
roughly to the continuous part of w ( x )  and the small, discrete, ‘weight at infinity’ as in 
figure 1. 

Consideration of the following two points, however, indicates that the analogy 
should not be taken too far. Firstly the underlying reason for the discontinuity at P 
seems to be quite different from that in a physical phase change. For a physical phase 
transition the discontinuity is produced by taking a large number N of strongly 
interacting systems with distributions in volume V, and letting N + CO as well as V +  CO. 

No phase discontinuity could result by allowing V to tend to infinity for a fixed number 
of particles. The discontinuity observed at the point P, however, arises from a single 
distribution; there is no suggestion of coupling between two or more distributions. ,The 
second point arises if, for example, we regard p2 as analogous to the internal energy U 
of a physical system which would imply that dS/a,u2 is analogous to 1/ T. In this case we 
would have 1/T+O ( T + m )  as the point P is approached from the left on the R =cc 
curve of figure 2. Since S and dS/dT would also be continuous, no latent heat or change 
of specific heat is involved, hence the only possible real physical analogy would be a 
third-order phase change at infinite temperature. 

2.4. More thun two moments specified 

There seems to be no general theory covering these cases. Individual cases have been 
calculated numerically. For example, Wilson and Wragg (1973) give maximum- 
entropy distributions calculated using M = 2, 4 and 6 with moments calculated from 
w ( . x )  = 4x e-2”(0 G x < CO). Powles and Carazza (1970a) treat the particular case of a 
symmetric distribution (pm = 0 for all odd values of m )  with M = 2 and 4. They derive 
the result that the necessary and sufficient condition for the existence of a maximum- 
entropy distribution given by 

w(x)=  c exp(-p2x2-p4x4) -CO<x<CO 

p2 6 p4 3p:.  

is 
2 

(2.22) 

(2.23) 

The left-hand inequality in (2.23) is an obvious necessary condition. The right-hand 
inequality expresses the fact that for given p 2  only, the maximum-entropy distribution 
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is a Gaussian 

(2.24) 

which gives p4 = 3p;. If p4 is specified to be greater than 3p:, we have another 
‘anomalous case’, similar to that discussed in § 2.3. In this case the entropy H of a 
distribution with given p2 and p4 has an upper bound S given by 

s = f ln(27rp2 e) (2.25) 

which is the entropy of the distribution given by (2.24). This upper bound can be 
approached arbitrarily closely, for example by a distribution approximating to (2.24), 
together with two small localised perturbations at *X, where X is large. More 
precisely, put 

+ W ’  
1 - x 2 / 2 a z  

a(2n)’12 e 
w = (1 - E 2 )  

where 

X < ( X ( < X ( l + E )  
other values of x .  

(2.26) 

(2.27) 

Then, for specified moments p2 and p4 satisfying 3 ~ 2 2  < p4, it can be shown that 

x = (!) ’2 [ 1 + ($ - 1) ; + 0 ( E  2 ) ] ,  

a2  = pz - ke + O(E’), 

k 
2P2 

H = s - - E  + O(E’ In E), 

where 

k = ( p 4 - 3 / ~ : ) ~ ’ ~ ,  

(2.28) 

(2.29) 

(2.30) 

(2.31) 

so that, as E + 0, the height E / ~ X  and width EX of the perturbations both approach zero, 
while their displacement X from the origin increases indefinitely. The entropy H 
meanwhile becomes arbitrarily close to S .  

When higher additional moments are specified (Powles and Carazza consider 
specifically the case of p2, p4, and p6),  then the straightforward classification of 
anomalous cases by simple moment inequalities seems not to hold, and the general 
theory of these more complex cases remains to be worked out. We consider later some 
specific numerical cases. 

3. The histogram approach 

3.1, High-entropy approximations in general 

The rigorous results derived so far and expressed in relations (2.13), (2.23) show that 
the problem of finding a probability density function which gives a strict maximum to 
the entropy for given moments may only be solved under quite severe restrictions for 
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the cases M = 2  and M = 4 .  Further similar restrictions may well come to light for 
higher values of M. From the point of view of an experimentalist or theoretician who 
simply wants to assign a distribution to a set of moments which is as unbiased as 
possible, a distribution which has the largest entropy of a particular class of functions 
may well have an entropy close to the upper bound, even it if is not a strict maximum for 
all absolutely continuous distributions. In particular, suppose we can find a class of 
functions {w(x)}, (where N is an integer parameter) such that for large N the { w ( x ) } ~  
can in some sense approximate to any continuous distribution. One method might be to 
construct the { w ( x ) } ~  from the first N members of a complete set of orthonormal 
functions over the given interval. (The drawback to this particular procedure is the 
difficulty of ensuring that the resulting probability density functions are everywhere 
positive. (See, for example, Wilson and Wragg (1973, p 172) where the {wN(x)} based 
on Laguerre polynomials are noted to be negative near the origin.)) For a given N, 
denote the maximum entropy HN for a fixed set of moments by S, (by analogy with the 
thermodynamic case) and denote by S the corresponding constrained upper bound (if it 
exists) for the entropy H over all continuous distributions, again for the set of moments 
given. Then as N -  CO we would expect SN - S and the corresponding w&) + w (x). 
Experience so far indicates that, near the optimum distribution, H is rather insensitive 
to the precise approximation to w (x) which is used. Hence we may expect to obtain a 
reasonable approach to S even with a finite value of N. For most of the ‘coordinate’ 
functions in common use a large value of N is required to represent a w (x) with anything 
like a local peak unless the effective range of w(x) is know in advance (which is rarely 
the case). 

This difficulty can be overcome to quite a large extent by choosing a wN(x) to be a 
histogram of a particular type described in the next section. 

3.2. Common-area histograms in the semi-infinite range 

Suppose for simplicity that we are dealing with the semi-infinite range 0 S x < 00, and 
that wN(x) is a histogram approximation to w (x) with N blocks. If the histogram is of 
the usual type in which each block is of the same width, then we need to know the 
effective range Reff of x before we start. Reff could be defined, for example, by 

loRCff d x w ( x ) = l - €  (3.1) 

where E is some arbitrary small number. Since it is rarely possible to estimate Reff 
beforehand, this would enormously complicate the calculation. 

Instead we define w&) to be histogram with N blocks, with an area 1/N common 
to all blocks. A typical common-area histogram for a one-sided distribution with N = 5 
is shown in figure 3. If a,, denotes the width of the nth block, then 

w, = 1/Na, 

x, =al+a2+.  . .+a,,. 
and 

The main advantage of histograms of this type is that they are characterised by the set of 
widths (al, a2, . . . , a,) of the blocks, which can be regarded as coordinates, and that the 
upper limit 

R = a l + a 2 + .  . .+aN=xN (3.4) 
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Figure 3. Typical five-block common-area histogram. 

great dva the range need not be specified in advance, which is tage from the 
algorithmic point of view. The normalisation is automatically built-in to the calcula- 
tion. A secondary advantage (but useful from the representational point of view) is that 
the ordinates are more closely bunched where w is largest (where most detail of the 
slope of a distribution is usually needed). For conciseness we refer to a common-area 
histogram of this type as a 'c-histogram'. 

3.3. Entropy maximisation of a c-histogram 

The information entropy H N  of an N-block c-histogram over 0 6 x S R is given by 

N *n R 

H N = - J ~  d x w l n w = - x  dx w In w. Jx.-, (3.5) 

Writing w, for the constant value of w over x , - ~  < x < X, we have 

w = w, = l /Nan  xn- l<x<x,  (3.6) 
where 

a, = x, -x , -~.  (3.7) 

Substitution from (3.6) and (3.7) in (3.5) leads (after some simplification) to 

1 N  

N,=i 
H N  = In N + -  1 In a,. 

The problem is then to find the set { a }  = (al, a2, . . . , a N )  which give H N  its greatest 
value SN subject to the fixed values of the moments pm (m = 1,2,. . . , M )  about the 
origin. We have, using (3.6) 

R 1 N 

k + l  n = 2  
( wlx:+l+ x wn(x:+l-x::;)) k 

pk= Jo dxx w(x)=- (3.9) 
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and using (3.6) and (3.7) this can be written 

N 

= u k n  
? I  = 1 

where 
k-1 k-1  k gkn ~X,- l+Xfl - lXn+.  k . .+x,-1x?l +xn 

(3.10) 

(3.11) 

(3.12) 

and xo = 0. 

and locating the stationary values of 
The constrained maximum of H N  is found by introducing Lagrange multipliers P k ,  

which are given by 

o = dH%/dal. 

Using (3.8) and (3.13), this eventually reduces to 

(3.13) 

(3.14) 

(3.15) 

The numerical determination of a set (xl, .*. . , xN;  p l , .  . . , P M )  satisfying equations 
(3.11) and (3.15) is discussed in 8 4.1. 

In general we denote by S N ( p l ,  pz, . . . , p ~ )  the maximum entropy of an N-block 
histogram with given moments p1, . . . , pM. 

3.4. First moment only 

Relations (3.11), (3.12) reduce to (putting M = 1) 

2N/~1=(2N-1)~1+(2N-3)~2+.  . .+3UN-i+~,v.  (3.16) 

We have also 

U01 = 1 

(+I/ = x1 +x1-1 

so that (3.15) reduces to 

2 
P1(2N-21+1)'  

a/ = 

(3.17) 

(3.18) 

(3.19) 

Substitution from (3.19) into (3.16) gives immediately 

P1= I l k 1  (3.20) 
so that 

= 2p1/(2N-21+ l), 1 = 1 , 2  , . . . ,  N. (3.21) 

This c-histogram for the case p1= 1, N = 20 is shown in figure 4, with the curve w = ePx 
(given by the maximum-entropy Jaynes-Shannon formalism) shown for comparison. 
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X 

Figure 4. The JS distribution w =e-', and twenty-block c-histogram with p ,  = 1.0. 

As will be seen, the agreement is about as good as possible with a histogram of this size. 
From (3.21) we have 

wi=(2N-21+ 1)/2Np.l. (3.22) 

This is the only case in which the wi and ai can be obtained explicitly in a simple form, 

Let T, denote the finite harmonic sum 
The formal proof that the histogram converges to the analytic function is as follows. 

1 1  1 
2 3  r T,= 1+-+-+.  . .+-. (3.23) 

Then we have the asymptotic expansion (see for example Stewart 1946, p 485): 

1 B1 B2 B3 

2n 2n 4 n  6 n  
T,, - y+ln  n +--y+y-~+. (3.24) 

where y is Euler's constant and B1, B2, . . . are the Bernoulli numbers. Using (3.19) we 
have 

(3.25) 

+. . .+  +- 
= ~ ~ . I ( T ~ N - ~ T N -  T2~-21 + ~ T N - [ ) .  

1 1 
2 N - 1  2 N - 3  2N-211.1 

Substituting from (3.24)for the harmonic sums in (3.25), we get after re-arrangement 

Using (3.22) this becomes 

(3 .26)  

(3.27) 
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Now keep k 1  and w fixed, let 1 = N ( l -  pw) and let N + CO. Then we can omit the suffix 1 
on x and from (3.27) we get 

lim x = -p1 In(plw) 
N+w 

in agreement with the result of $ 2 . 2  which in this case (a = 0) is 

1 - x / w *  w = - e  . 
k1 

(3.28) 

(3.29) 

4. Numerical results 

4.1. Numerical solution of the maximisation equations 

It was shown in 0 3.3 that the determination of a maximum entropy histogram was 
equivalent to finding the stationary values of 

1 f u k n )  

M 1 
N k = l  N ( k  + 1) n = l  

H&= ln N+-[In X l  + ln(x2 - X i ) + .  . . -4- ~ ( X N - X N - ~ ) ]  1 P k (  p k  - 

where 

(Tkn = x n - l  k + X n - l X n  k - 1  + . . . + x n - l x : - '  + xt: 

and xo = 0. 
We seek therefore a set 

X = ( x l ,  x2,. * * 7 X N ;  P1,  p 2 ,  * 9 - 9 pM) 

which satisfies the N + it4 non-linear algebraic equations 

E ; ( x l ,  ~ 2 , .  X N ;  P i ,  P 2 , .  - . , PM)=O 
for i = 1 ,2 , .  . . , N + M ,  where 

F,, = aH&/axn 

for n = 1,2,  . . . , N, and 

f o r k = 1 , 2  , . . . ,  M. 
An iterative scheme for solving (4.4) involves starting from a point 

x, = (xi0',  xi0), . . . , x p ;  pi"', p p ,  . . . , pg) 
and solving the N + M  simultaneous linear equations 

A(Xs)Es+l= RWs) 

for s = 0, 1 , 2 , .  . . , and taking 

X , + ~ = X s + E s .  



Maximum entropy histograms 1453 

The matrix of coefficients, A(&), and the right-hand side, R(X,), in (4.8) have the forms 

(4.10) 

(4.1 1)  

for i = 1, 2, . . . , N + M ,  with the individual elements evaluated at the point X,. 
In view of the underlying wish to use the maximum-entropy approach to fit a 

sequence of histograms that progressively match an increasing number of specified 
distribution moments, a numerical algorithm was sought which would cater, for fixed N, 
with arbitrary values of M. In order to produce such an algorithm it is necessary to 
express A(X,) and R(Xs)  in recursive form with respect to their dependence on M. To 
illustrate this dependence more clearly we introduce the notation AtM) for A(X,) and 

for R(X,), the evaluation of the elements at the point X, being understood. 
We note firstly that A(2) and R(') have the forms 

and 

(4.12) 

(4.13) 

In (4.12), the entries a:: are the elements of an N x N symmetric tridiagonal matrix 
with main diagonal: 

and super-diagonal 

The remaining elements are defined by: 

(4.15) 

(4.16) 
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, N - 1  (4.17) 

p = l  

p = 2 , 3 , . , . , N - l  

(4.18) 
p = N  

(4.19) 

(4.20) 

The matrix A(m) can now be defined recursively in terms of A(m-l) by noting that 

(4.21) 

The elements bk:’in (4.21) constitute an NXNsymmetric tridiagonal matrix with main 
diagonal 

- P m  
(m + l)N 

[2m ( m  - 1 ) x ~ 1 +  ( m  - l ) ( m  - 2)x;1-3x2 + . . . + 2 x ~ - * ] ,  

- P m  { [ 2 x ~ - ~ + .  . . + m ( m - 1 ) ~ ? - ~ ]  

+ [ m ( m - 1 ) x ; f - 2 + ( m - l ) ( m - 2 ) x Y - 3 x 3 + . .  , + 2 x ~ - ~ ] } , . . .  , 

( m  + l)N 

(2xK1:+. . .+m(m-l )xF-*)  (4.22) 
- P m  

(m + l )N 

and super-diagonal 

- P m  [(m - I ) X ~ - ’  + 2(m - 2 ) ~ 1 ; - ~ ~ ~  + . . . + ( m  - I)XY-~I, . , , , ( m  + l )N 

[ (m - 1)x;I: + 2(m - 2 ) x ; : ; x ~  + . . . + ( m  - ~ ) x K - ~ ] .  (4.23) 
- P m  

(m + l )N 
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The non-zero elements of the (N+m)th  row and the (N+m)th  column of A'" are 
defined by 

{ m x ; " - ' + [ m x T - ' + ( m -  1)X;"-2X2+. . . + x z " - ' ] }  
[ - ( m + l ) N  1 

I p = q = 2 , .  . . , N - 1  

(x;:;  + 2x;::xN + . . . + mx;-') 1 1 - ( m  + l ) N  

p = q = N .  

Similarly, R'" can be defined recursively in terms of R(m-l) .  We note that 

R ( m ) =  

(4 .24)  

(4 .25)  

where 

U;"'= -/3,,,b~m~+m p =  1 , 2 , .  . . , N (4.26) 
and 

Wlv"!m= -FN+m. (4.27)  
An ALGOL program incorporating recursive procedures has been written to implement 
the iterative solution of the maximisation equations. The program can be used in 
several modes depending on the amount of information available for the problem under 
study. 

4.2. A particular continuous distribution 

To demonstrate consistency with the results from the analytic JS formulation we 
consider a case previously discussed (Wragg and Dowson 1970, figure 1) with density 
function 

(4 .28)  

(4 .29)  

Here ~ Z / W :  = 3 / 2  < 2 so the Wragg-Dowson criterion is satisfied. Graphs of the 
corresponding histograms with N = 20 and M = 2 and 3 are given in figures 5 and 6 with 
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X 

Figure 5. Twenty-block c-histogram for p1 = 1, pz = 1.5, with the continuous distribution 
w = 4x e-2x. 

X 

Figure 6.  Twenty-block c-histogram for p1  = 1, pz = 1.5, p3 = 3.0, with the continuous 
distribution w = 4x e-2x. 

the graph of equation (4 .28 )  for comparison. The successively closer approximation to 
the full curve is quite marked, and closely parallels that given by the earlier approach. 

4.3. A 'two-peak' distribution 

To test the computational method on a distribution with a more detailed structure, a 
distribution consisting of two isosceles triangles was selected, given by 

2x o s x  s 112 
2(1 - x )  1 / 2 s x  s 1 

w ( x ) =  2 ( x - 1 )  1 s x  s 312 
4 - 2 ~  3 1 2 s x s 2  I 0 other values of x. 

(4 .30)  

Elementary algebra gives the formula for the moments as: 

1 ( 2( 1 + 2 ' + ' ) - 2k+l ( 1 + 3 ' +')) 
2 

'' = ( k  + l ) ( k  + 2 )  (4 .31 )  
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Obviously to obtain any reasonable histogram which would approximate to (4.30) one 
would expect more moments to be required than the previous cases. In fact five 
moments and 20 blocks in the histogram give the fit shown in figure 7, where the 
histogram reproduces to a remarkable degree the main features of the original 
distribution, which is also shown for comparison. This implies that, for the moments 
specified, there is little ‘room for manoeuvre’ in assigning a probability distribution, 
since the double-triangle distribution giving rise to these moments is in no particular 
sense a maximum-entropy distribution. Incorporation of higher moments still would be 
expected to reduce the ‘room for manoeuvre’ still further, and the corresponding 
c-histogram to approach the double-triangle dlstribution still more closely as regards 
general features, although formal convergence of the histogram (as both N + 00, and 
M +  00) to the double triangle has not been established. 

L 

Figure 7. Twenty-block c-histogram fitted, with five moments, to a double-triangle 
distribution. 

4.4. An ‘anomalous’ distribution 

It has already been noted (Dowson and Wragg 1973) that the use of the maximum- 
entropy criterion for fitting distributions over 0 s x < 00 has one somewhat unsatisfac- 
tory aspect. This occurs when the first two moments pl, pz are specified and p~ > 2p:. 
For this case no maximum-entropy distribution having the specified moments exists. 
For any finite range R the Jaynes-Shannon formalism does give admissible distribu- 
tions but as R + a3 these always converge, for given x, to the negative exponential 
distribution (l/pl) exp(-x/pl) irrespective of the given value of p2.  

In order to see the extent to which this behaviour is reproduced by the present 
approach using histograms we examine the x2 distribution with one degree of freedom 
cited by Wragg and Dowson (1970,1973). In our present notation this distribution has 
density function 

(4.32) 

with moments p1= 1, p2 = 3. For this distribution p z / p ?  = 3 > 2, and hence no 
maximum-entropy distribution exists over 0 s x < CO satisfying these moments. For 
conciseness we term this an ‘anomalous’ case. 

The current method when presented with these moments gives, for finite N, a 
distribution over a finite range R = XN even though this is not specified in advance. In 

w ( x )  = ( 2 T ) - 1 / 2 x - l / 2  e-x/2 
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view of the discussion above it would be expected that the c-histogram for this value of 
N would correspond closely with the JS distribution over 0 s x s xN.  This is illustrated 
for the case N = 10 in figure 8. 

Figure 8. 'Anomalous case' c-histogram for 
distribution over the same range. 

= 1, p2 = 3, and the corresponding IS 

The histogram was obtained first and then the JS continuous distribution obtained 
for the same value of R = xN. It can be seen that the main features of the continuous 
distribution are well represented by the histogram, with the exception of the slight 
increase in the w&) as x + R, which is beyond the resolving power of the histogram to 
reproduce. 

The correspondence between c-histograms with finite N and JS distributions over 
finite ranges means, of course, that taking increasingly large values of N will produce 
histograms which approximate more and more closely the limiting distribution 
(1/p1) exp(-x/Fl). It is interesting, however, to compare the ten-block histogram 
fitted to the x: distribution (shown in figure 9). 

4.5. Convergence of the histogram 

Two convergence problems arise in connection with the histograms produced by the 
method described here. To discuss them, let wn(xlM, p )  denote the c-histogram of 
maximum entropy with N blocks, corresponding to M given moments 
( p ~ ,  p2,.  . . , p ~ ) .  The first convergence question concerns the existence of a limiting 
distribution w ( x / M ,  p) given by 

Assuming the existence of the limit implied by (4.33), the second question arises when 
the ( p l ,  . . . , pM) are a subject of an indefinitely large number of moments, any of which 
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W ’I 1 0  

X 

Figure 9. ‘Anomalous case‘ ten-block c-histogram for = 1, p2 = 3, and the ,y2 distribu- 
tion = (2a) -1 /2  -112 -4x x e .  

are available numerically. The question then arises of the existence of a limiting 
distribution 

w ( x / p ) =  Iim w(x(M, p ) .  (4.34) 
M+C€ 

So far the only case in which the limit given by (4.33) has been proved to exist is in the 
simplest case M = 1 discussed in Q 3.4. All the other results obtained numerically are at 
least consistent with the following conjecture: ‘For a set of moments ( ~ 1 , .  . . , p ~ )  
where there is a continuous maximum-entropy JS probability density function wJs(x) 
with the moments specified, then this is the limiting probability density function 

For the anomaldus cases mentioned earlier the situation is more complicated. Some 
insight into the problem may be obtained by considering the M = 2  case discussed 
earlier with F~ = 1, p2 = 3. It has been shown (Wragg and Dowson 1970, Dowson and 
Wragg 1973) that for a finite range O S X  s R, there exists a maximum-entropy JS 

function: 

w(xIM P I ’ .  

WR ( X I  = c exp(-px + yx ’1 (4.35) 

where c, /3 and y are positive constants, and 

l = J  dXWR, 
0 

(4.36) 

(4.37) 

(4.38) 
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A particular case of (4.35) is shown in figure 8. The range can be split up into 
0 s x s 5, over which the Jaynes-Shannon wR ( x )  is approximately equal to c exp(-px), 
and the region 5 <x  G R over which the term in y in (4.35) is significant. As R increases 
indefinitely, c + 1, and p + 1, and the y-significant region moves steadily to the right. 
The value of y is such as to satisfy (4.38) which for large R (and c, p approximately 
unity) becomes approximately 

3 = loR dx x 2  exp(yx2-x). (4.39) 

For given x then we have 

lim w R ( x )  = e-' (4.40) 
R -00 

which of course does not satisfy the equation (4.38), and so the limiting distribution 
does not give the required second moment, even though each member of the sequence 
of distributions does give the required value. Present indications are that the behaviour 
of the histograms parallels this, suggesting that the maximum-entropy criterion is ill 
adapted to practical calculations for anomalous cases, which, however, are somewhat 
exceptional. For given N the histogram corresponds closely to the continuous JS 
distribution over the same range, and as N+cO then for fixed x, the histogram 
approaches the curve e-', the region of appreciable discrepancy moving off to the right 
with increasing H (increasing range). This is in substantial agreement with the results 
for the rather artificial distribution shown in figure 1. 

4.6. Depth distributions from ion implantation 

When a beam of energetic ions impinges on a solid, the incident ions penetrate the solid, 
are gradually slowed by collisions with the atoms of the solid, and after neutralisation of 
their original charge, come to rest in the solid as implanted atoms. The theory of the 
slowing down process has been discussed in a number of papers, notably by Winterbon 
and his colleagues. (See for example Winterbon et al( l970,  to be referred to as wss) for 
a full discussion, where numerous further references are given.) It is a problem of some 
importance to be able to predict the eventual distributions both of the implanted atoms 
and the energy they release. Using an integro-differential equation to describe the 
slowing down process, a set of equations is derived yielding expressions for the 
moments of the depth distributions of energy and implanted atoms (wss, p 42). The 
corresponding complete distributions must then be inferred from these moments. In 
the wss paper this is done by several different statistical methods. The distributions 
obtained agree fairly well as regards their main features but differ considerably in 
detail (wss, p 52) .  

To illustrate the use of the present method we select the particular case where the 
ion beam is incident normally on the solid surface, and the implanted atoms are of mass 
equal to that of those of the solid target. In this case the expression for the nth moment 
p, (in our notation) of the distribution of released energy (or 'damage' in wss 
terminology) given on page 42 of the wss paper simplifies to 

p, = 2 (21 + 1)AY. 
I 

(4.41) 
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Here the AY are numbers resulting from the slowing-down theory which can be 
expressed in terms of integrals involving Legendre polynomials. They depend on an 
integral scattering parameter m and are tabulated, up to 1 = 5 ,  on page 37 of the wss 
paper. 

Following wss we select the case m = 1/3 ,  giving the following moments: 

po = 1*000000 (simple normalisation) 

pi = 0.505500 

p2 = 0.359350 

p3 = 0.3 15 100 

p4 = 0.322818 

ps = 0.374316. 

(4.42) 

Although the values given in (4.42) are obviously specified to much higher accuracy 
than experimental measurements would justify, it was felt appropriate not to round-off 
to a smaller number of significant figures until the sensitivity of the method to small 
changes in the moments had been tested. Corresponding c-histograms for both four 
and five moments have been computed and are shown in figure 10. For comparison the 

X 

Figure 10. Continuous and histogram maximum-entropy distributions for the wss 
moments. 

continuous JS distribution is shown for the first four moments specified. The determina- 
tion of this JS curve gave rise to numerical difficulties, and so far it has not proved 
possible to obtain the five-moment JS curve at all. The determination of the c- 
histograms, on the other hand, did not present any special technical problem. This 
seems to be typical, in that even in cases where the continuous JS distribution for a given 
set of moments does exist over 0 d x C CO, it is more difficult to obtain numerically. 

From figure 10 it can be seen that the specification of the fifth moment has the effect 
of moving the maximum of the damage distribution function from x = 0.4 to x = 0.27, 
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i.e. nearer to x = 0 (the solid surface, in physical terms). This is in broad qualitative 
agreement with the wss curves for the Edgeworth series where the introduction of 
higher terms in the series moves the maximum back from 0.5 to 0.3. A significant 
difference between figure 10 and all the wss curves lies in the ratio W,/WO, where w, 
denotes the maximum value of the distribution function, and W O  denotes the corres- 
ponding value at x = 0. For all the distributions of figure 10 this has a value of about 2.2, 
whereas for the wss curves, it ranges from 2.6 to 4.1, that for the Edgeworth series 
being 3.4. The reason is probably that the wss distribution are all fitted to the given 
moments over --CO < x <a, and contain significant contributions from the physically 
unrealistic region x < 0. It would appear that this leads to an underestimate of the 
damage immediately below the surface (as compared with that further in) by something 
approaching 50%. In this respect, the present method seems much more reliable in that 
the distribution is only defined (and the moments evaluated) over the region inside the 
solid where it actually exists. This is quite apart from the fact that it makes no prior 
assumptions about the shape of the distribution, whereas all the statistical methods used 
in the wss paper depend on the assumption of a particular functional form (usually 
related to a Gaussian) which is assigned to an ad hoc basis. 

To assess the effects on the histograms of small variations in the specified moments, 
it was necessary to resort to empirical methods, since so far it has not been found 
possible to express the histogram parameters as analytic functions of the moments. A 
20-block histogram was calculated specifying the first three moments given by relations 
(4.42). Some or all of these were then varied by *1'/0 and the corresponding 20-block 
histograms computed. Some idea of the variations produced is given in table 1 which 
shows the resulting values of the moments p4 and p5 (which may be compared with the 
values in (4.42)) and the corresponding entropy SZ0(pI, p2,  p3). It can easily be seen 
that while the changes in 114 and p5 are small and apparently nearly linear functions of 
the A p l ,  Ap2 ,  A p 3  the changes in S are quite large and very non-linear. For example 
( A ~ I ,  hp2, h ~ 3 ) =  (0, +1%, 0) gives AS =0.0176 while ( A p , ,  Ap2 ,  A p 3 ) =  (0, -l0/o, 0) 
gives AS=-0.0300, a change nearly twice as great, and amounting to 18% of the 
original entropy. 

Table 1. Variations in estimated values of w4, p5 and entropy resulting from small changes 
in specified values of wl, p2 and p 3 .  

h i  Aw2 b 3  c(4 w5 S Z O  

0 
+ 1 % 
- 1 % 

0 
0 
0 
0 

+ 1 % 
+ 1 % 

0 
0 
0 

+ 1 % 
-1% 

0 
0 

- 1 % 
- 1 '/a 

0 
0 
0 
0 
0 

+ 1 % 
- 1 Yo 

0 
+ 1 % 

0.3209 
0,3267 
0,3159 
0.3104 
0.3328 
0.3310 
0.3111 
0,3394 
0.3505 

0,3642 
0,3832 
0.3482 
0.3345 
0.3999 
0.3870 

0.4228 
0.4499 

0.3429 

0,1662 
0.1390 
0.1827 
0.1838 
0.1362 
0,1599 
0.1710 
0.0984 
0.0857 

Examples of the actual histograms produced are shown in figure 11. Clearly the 
shape obtained for the distribution is quite sensitive to small variations in the specified 
moments, although the variations are no greater than those produced by different 
statistical methods of calculation for the same moments as shown in the wss paper. 
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X 

Figure 11. Histogram sensitivity to small variations in the first three moments specified. A ,  
p I ,  pz ,  p3 unchanged; B, A p l  = +1%; C,  A p l  = +1%, A p 2  = -1%. 

5. Summary and conclusions 

Results so far suggest that the approach described here is a useful way of assigning a 
probability distribution to a variate when only a limited number of moments are 
available. Moreover the method offers significant practical advantages over the con- 
tinuous Jaynes-Shannon formalism although the difficulty associated with distributions 
described as anomalous is reproduced. Numerical investigations indicate that the 
entropy of a distribution determined by the method is very sensitive to variations in the 
prescribed moments. A particularly attractive feature of the method, unlike most 
numerical estimates of semi-infinite distributions, is that the upper limit of the histo- 
gram does not have to be specified in advance, but is assigned automatically by the 
program. Results so far have been confined to the semi-infinite range; however, this 
limitation is not inherent, and it is hoped to present results for distributions over 
-a < x < 03 before long. 
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